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Abstract: The radiothermometry (RTM) study of a cytochrome-containing system (CYP102 Al) has
been conducted in order to demonstrate the applicability of RTM for monitoring changes in the
functional activity of an enzyme in case of its point mutation. The study has been performed with the
example of the wild-type cytochrome (WT) and its mutant type A264K. CYP102 A1l is a nanoscale
protein-enzymatic system of about 10 nm in size. RTM uses a radio detector and can record the
corresponding brightness temperature (T},) of the nanoscale enzyme solution within the 3.4-4.2 GHz
frequency range during enzyme functioning. It was found that the enzymatic reaction during the
lauric acid hydroxylation at the wild-type CYP102 A1 (WT) concentration of ~10~° M is accompanied
by Ty, fluctuations of ~0.5-1 °C. At the same time, no T}, fluctuations are observed for the mutated
forms of the enzyme CYP102 Al (A264K), where one amino acid was replaced. We know that the
activity of CYP102 A1 (WT) is ~4 orders of magnitude higher than that of CYP102 Al (A264K). We
therefore concluded that the disappearance of the fluctuation of T;,, CYP102 A1 (A264K) is associated
with a decrease in the activity of the enzyme. This effect can be used to develop new methods for
testing the activity of the enzyme that do not require additional labels and expensive equipment, in
comparison with calorimetry and spectral methods. The RTM is beginning to find application in the
diagnosis of oncological diseases and for the analysis of biochemical processes.

Keywords: radiothermometry; cytochrome; CYP102 A1; brightness temperature

1. Introduction

Radio biology and radio medicine is a field of science that develops the theory and
practice of application of radiation for biology and medical purposes [1-13]. The radio-
thermometry method is relatively inexpensive and allows one to detect radiation in the
microwave range in real-time mode without using additional tags. The RTM method is
based on monitoring the T}, which can change during the biochemical reaction [9]. The T,
is a temperature value that equals the thermodynamical temperature of a complete radiator.

During the biochemical reaction, a non-balanced condition of the medium can appear
that is characterized with the increase in T, which can be accompanied by radiation in a
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certain frequency range. This is why the radio detector used allows us not only to conduct
diagnostics to detect tumors on a macrolevel, but also to measure the kinetics of biochemical
processes on a milli-level (tumours [3-8]), micro-level (cell processes [10]) and even on
a nano-level (enzyme reactions, denaturation processes [11,12]) in a microwave range to
monitor the changes in Ty,.

Regarding the milli-level, the use of RTM for the diagnosis of socially significant
diseases was reported in a number of papers: the revelation of cancer at an early stage
by detecting an increase in local brightness temperature (in microwave range) in the
tumour growth region was reported [1-8]. In addition to standard methods, such as
X-ray diagnostics, the RTM method can provide additional “energetic” information on the
intensity of proliferative processes and the speed of the tumor growth, etc. It was noted that
combining mammography and the RTM method lowers the risk of false negative results
three- or four-fold and raises the diagnostics’ sensitivity up to 98% [3].

Regarding micro- and nano-level, studies on the use of radiation occurring during
the modulation of functioning of enzymes, either with or without the introduction of
microparticle labels, were reported. So, as an example of an approach utilizing labels, the
application of micron-sized ferromagnetic iron-oxides for local thermal control of amylase
activity with the use of 0.34 MHz radio frequency range can be pointed out [14].

Magnetic nanoparticles of 6 nm to 70 nm in diameter can be employed for the modula-
tion of activity of 3-galactosidase, bovine carbonic anhydrase and thermolysin [15-17]. An
increase in protease activity after the irradiation of the enzyme, labeled with 4 nm gold-
coated magnetite particles in a radio frequency (17.76 MHz) field, owing to a conversion
of the radio frequency radiation into local heat was demonstrated [18]. Moreover, a very
interesting approach to the local regulation of the properties of proteins with the use of
iron oxide nanoparticles of various sizes was recently reported by Ovejero et al. [19]. These
authors developed a selective magnetic nanoheating approach for the multi-hot-spot in-
duction and sequential regulation of enzymes [19]. This approach creates a new paradigm,
providing an opportunity for the selective regulation of multi-enzyme reactions.

Within the range of shorter microwaves, modulation of the properties of proteins was
demonstrated even without the introduction of nanometer-size particles. So, electromag-
netic irradiation was demonstrated to induce conformational transitions in hemoglobin [20].
The possibility of conformational changes in macromolecules upon the impact of electro-
magnetic radiation was shown with the example of antibody/antigen interaction [21].

On a nanoscale, studies on the registration of self-radiation of label-free enzyme
systems are important. It is known that nanoscale heme-containing enzymatic systems
based on horseradish peroxidase (HRP) and CYP102 A1, where enzymatic components
have the size of about 10 nm, as noted above [22], can emit in the microwave band as they
function [9,12,23]. In these studies, radiation was detected using the RTM method in the
microwave range of 3.4 to 4.2 GHz. The question is, however, whether or not there can
be a change in the microwave radiation of enzyme systems upon point mutations in the
enzymes. This is particularly important, since the increased expression of the mutant forms
of proteins is known to take place in some cases of oncological diseases [13,24,25]. We
should note that cytochromes P450 and their mutant forms can take part in cancer formation
and cancer treatment. They mediate metabolic activation of numerous pre-carcinogens
and participate in the activation and inactivation of anti-tumor medicines [26]. This makes
developing and applying new methods to analyze the functional condition of these systems
in order to receive fuller, more relevant information about them.

To study the mechanism of cytochrome P450 functioning, a simpler model bacterial
system CYP102A1 of the cytochrome P450 enzyme superfamily characterized in [22] is usu-
ally employed, and, in the present study, we have also used this model system. CYP102A1
represents a self-sufficient enzyme, where reductase and heme domains are linked in one
polypeptide chain [23]. The latter fact raises interest in it as a convenient simplified model
of a transport chain of monooxygenase systems containing cytochrome P450, which plays
arole in CYP102A1 catalysis of hydroxylation of saturated and unsaturated fatty acids [27].
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As we demonstrated previously, during the functioning of an enzyme system containing
10~2 M of the CYP102 A1 enzyme, microwave radiation has been observed in the form of
Ty, pulses [9].

In the present work, the registration of the influence of the effect of a point mutation
in cytochrome P450 CYP102A1 on the brightness temperature in a model reconstructed
system. For this purpose, we compared T}, fluctuation for the wild type of CYP102 Al
(WT) and its mutant type CYP102 Al (A264K). The activity of CYP102 Al (WT) in the
presence of the lauric acid (LA) is ket = 50 s ! at the enzyme concentration of ~1077 M [28].
In addition to this, we know that the activity of the mutant type CYP102 A1 (A264K) upon
lauric acid hydroxylation is about kg = 0.006 s~1 [29], which is three orders lower than
the activity exhibited by CYP102 A1 (WT). Therefore, we have chosen CYP102 Al (A264K)
for our study in order to conduct a comparative analysis of radiation of solutions in the
presence of a significantly less active CYP102 A1, but at the same enzyme concentration.
We have shown that the passage from the wild type of protein to its mutant type connected
with an 8333-fold increase in activity leads to the disappearance of microwave radiation.
Thus, we have shown that the T}, fluctuation of the solution CYP102 Al is dependent on
its activity.

2. Materials and Methods
2.1. Chemical Agents

Phosphate-buffered saline (2 mM, pH 7.4) containing 75 mM NaCl was purchased from
Pierce (Waltham, MA, USA). Deionized ultrapure water was obtained using a Simplicity
UV system (Millipore, Molsheim, France). Sodium laurate and NADPH were purchased
from Sigma (St. Louis, MO, USA).

2.2. Proteins

Wild type protein cytochrome CYP102 A1 (WT) was provided by Professor S.A. Us-
anov and expressed according to [28]. The sample protein solutions (~10~° M) were
prepared from the stock solution (50 uM in 23 mM potassium phosphate buffer) with the
use of subsequent ten-fold dilution in the in-process buffer. Mutant type protein CYP102
Al (A264K) was kindly provided by the laboratory of Professor V.G. Zgoda (Institute of
Biomedical Chemistry, Moscow, Russia) and prepared according to [30].

2.3. Analytical Measurements

Protein concentration was determined using the spectrophotometry method. CYP102
A1l (WT) and (A2643K) absorption spectra were measured using spectrophotometer Agilent
Model 8453 at the temperature of 23 °C. The pure CYP102 A1 (WT) and (A2643K) concen-
trations were determined from the differential absorption spectra of carboxycomplex of
their recovered forms, using the extinction coefficient of 91 mM~1 em~1 for the absorption
difference at wavelengths of 450 nm and 490 nm, according to the method described in [31].

2.4. Methods of Monitoring Microwave Radiation of CYP102 A1 Solution
2.4.1. Catalytic Reaction in CYP102 A1l System

Catalytic reaction in the enzymatic system has been conducted in a measurement cell
with a reconstructed (WT) or (A2643K) system containing CYP102 Al and its substrate, lau-
ric acid, LA (0.5 mM) in PBS-D, following a similar scheme as described in [9]. The reaction
was initiated by adding a water solution NADPH (0.2 mM) into the incubating medium.
Measurement conditions: volume of sample solution 200 pL, temperature 23 °C. The check
measurements of the solution brightness temperature were taken using two solution types:
the one not containing a substrate or the one not containing electron donor NADPH. The
duration of measurements was at least 400 s.
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2.4.2. Measuring Microwave Radiation of CYP102 A1 Solution

As a microwave detector, we used a broadband radiometer RTM-01 RES, operating
range: 3.4 to 4.2 GHz. In order to measure the solution’s T},, we completely immersed the
detector’s buggy-whip antenna into the sample solution similar to the one in [9].

As we noted in the introduction, the radiometer measures the T}, of the object. Radia-
tion power, P can be assessed in the frequency range Af measured by the radiometer.

We know that

P =kTAf, (1)

where k is the Boltzmann constant, T is the temperature, and Af is the frequency range [32].
Equation (1) shows that the radiation power is proportional to Tj,. Therefore, from here
on the radiation power (radiation energy for the frequency band Af) will be measured in
degrees. We will thus use Tj, units that the radiometer RTM-01 RES is divided into to show
the results we acquired. Our measurements shall be 0.1 °C precise. These measurements
figures shall be shown as a brightness temperature’s function of time, T, (t).

2.5. AFM Visualization
2.5.1. Sample Preparation

First, 0.5 mM CYP102A1 in 10 mM phosphate-buffered saline (pH 7.4) was applied to a
mica AFM chip. Then, the AFM chip was washed with distilled water and placed in 2.5 mM
phosphate-buffered saline. The measurements were carried out at an air temperature of
~25 °C.

2.5.2. Atomic force Microscopy Measurements

Visualization of CYP102A1 molecules was carried out employing an atomic force
microscope (AFM Dimension 3100, Digital Instruments, Veeco) in liquid. The measurements
were conducted in a semi-contact mode using DNP-510 probes (Veeco). The stiffness
constant of the probes was 0.32 + 0.58 N/m. The AFM scanning was performed in semi-
contact mode, analyzing the time dependence of the height fluctuations of CYP102A1
molecules according to the method described in [30,33].

2.6. AFM Data Processing

The processing of AFM data and measurement of the heights of the visualized objects
were conducted using the AFM dtp software (IBMC, Russian Academy of Medical Sciences,
Moscow, Russia). The heights of CYP102A1 protein molecules were determined as the
corresponding maxima of their height distribution p(h) using the following equation:

o(h) = % £100% @)
where N, is the number of proteins visualized with height /1, and N is the total number

of proteins visualized. The experimental dependence (1) was approximated using the
Gaussian function:

—4ln(2)(11—hg)2
2 Ae w?
o) = Ypilh) = ¥ 2 )
i=1 W\ / 1)

where A, h;, w are parameters varied during approximation. In this case, the position
of the maximum height distribution of objects was calculated as the maximum of the
approximating function (2) for each distribution. The curve was approximated by the sum
of two exponentials, and the obtained AFM images of visualized objects were divided into
two groups with the corresponding maxima of #y4x1 and hyayo.

2.7. Analysis of CYP102A1 Molecules’ Activity Using the AFM Method

The analysis of the enzyme molecules’ activity was carried out similarly to the method
described in [33]. This method has been adapted for both (WT) and (A264K) CYP102A1
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molecules in [30]. Under this method, an increase in the oscillation amplitude of the
CYP102A1 enzyme globule in the process of substrate hydroxylation is measured. This
approach was used in the present work to analyze the activity of the CYP102A1 protein
both (WT) and (A264K).

For this purpose, after AFM visualization of the enzyme, the height fluctuations of
the CYP102A1 enzyme oligomers both (WT) and (A264K) were monitored during the
reaction of lauryl acid hydroxylation. AFM measurements of the height fluctuations of
single CYP102A1 molecules were carried out as described above (Section 2.6 in Materials
and Methods) according to the techniques described elsewhere [30,33]. In order to do so,
the scanning area was chosen so that the selected enzyme molecule could be found in the
AFM frame. Then, having selected this molecule, scanning along the slow axis was turned
off. By doing so, a time sweep image of the same part of the molecule was obtained. The
scanning frequency was set to 1 Hz. In each image, the rms value of the height fluctuations
of the enzyme molecule was calculated as the rms value of the fluctuations of the molecule
vertex, minus the background fluctuations from the surface of the AFM chip.

The height fluctuations (Ah) of the CYP102A1 enzyme molecule oligomers, both (WT)
and (A264K), were obtained in 2.5 mM PBS-D buffer in the presence of its substrate, lauric
acid (0.5 mM) in the absence of NADPH (inactive oxidated coditions), and in the presence
of both the substrate and NADPH (0.2 mM) (hydroxylation reaction conditions).

3. Results
3.1. Results of Microwave Radiation Check-Measurements

The solution containing CYP102 Al enzyme (WT or its mutant type A264K), as well
as its substrate LA, but not containing NADPH, is a reconstructed cytochrome P450BM3-
containing system in its inactive state. Two variants of check-experiments were carried out:

(1) Experiments were held in order to find out the basic level of microwave radiation
noises that emerge during mechanical excitation in an inactive enzyme CYP102 Al system.
For this, we mixed a solution containing protein and its substrate, the lauric acid, but not
containing electron donor NADPH.

(2) Experiments were held in order to detect how adding NADPH into the buffer
solution affects the microwave radiation level. For this purpose, NADPH was added
into a solution containing CYP102 A1 WT or A264K but without a substrate. The results
of type 1 check-experiments have shown that a slight increase in Tj, is observed at the
mechanical excitation of the solution. This increase value was further used as the noise
level of the microwave radiation of the solution containing CYP102 A1l (WT) protein at the
concentration of ~10~% M and LA, but not containing NADPH (Figure 1). The detected
noise level of the microwave radiation did not exceed +0.5 °C. As an example, Figure 1
shows typical measurement results as per type 2 in the presence of CYP102 A1 (WT) and
(264K), where we can see the emergence of such a noise impulse after adding NADPH or
when stirring the solution.

When conducting check-experiments as per the variant 2, the influence of adding
NADPH into the system on the microwave radiation levels was observed (Figure 2).

As shown in Figure 2, changes in the level of microwave radiation of the solution did
not exceed £0.5 °C when adding NADPH into the system containing CYP102 A1 (WT) or
(264K), but not containing the substrate.
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Figure 1. Example of the influence of mechanical excitation on Ty, (t). Assay conditions: inactive
reconstructed CYP102 Al system, an incubation mixture in the cell: Ccypinoa1 = 1072 M, 0.5 mM
LA, 10 mM phosphate-buffered saline, pH 7.2, V = 200 pL, Tyojution = 23 °C. Arrows indicate the
excitation of the solution in the cell.
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Figure 2. Example of how adding NADPH into the buffer influences Tj,(f). Assay conditions:
incubation mixture in the cell: Ceyproaar = 1072 M, 10 mM phosphate-buffered saline, pH 7.2,
V =200 pL, Tsoution = 23 °C. Curve 1 (triangles)—CYP102 Al (WT); curve 2 (circles)—CYP102 Al
(264K). Arrows indicate adding electron donor NADPH into the system and moments of stirring the
solution in the cell.
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3.2. Results of Detecting Microwave Radiation of CYP102 A1 WT and A264K Solution

Microwave radiation of CYP102 Al (WT) enzyme and its mutant type (A264K) in
the process of catalytic cycle was detected at the temperature of 23 °C. Earlier, at this
temperature, we obtained results on the radiation of enzyme solutions of wild type CYP102
Al (WT) in the presence of LA substrate.

Radiation processes have been studied when using CYP102 A1 (WT) at the concentra-
tion of ~10~% M. For this concentration, radiation was detected that was expressed through
the emergence of impulses on the curve of function of T}, of the sample solution when
conducting an enzymatic reaction. An example of obtained measurements data of the T,(f)
dependence is shown in Figure 3.

27 +

26

25

24 A

BRIGHTNESS TEMPERATURE, °C

wy

I

+NADPH MECHANICAL MECHANICAL MECHANICAL
EXCITATION 1 EXCITATION 2 EXCITATION 3

22 + t + t + t + !
0 200 400 600 800 1000 1200 1400 1600

TIME, (S)

Figure 3. Example of Ty, (t) dependence of the reconstructed CYP102 Al (WT) system. Assay
conditions: Ceypiopat = 1072 M, 0.5 mM LA, 10 mM phosphate-buffered saline, pH 7.2, V = 200 uL,
Tsolution = 23 °C. Arrows indicate adding the electron donor NADPH into the system and moments
of stirring the solution in the cell.

As shown in Figure 3, when NADPH is added into the solution containing protein
at the concentration of 10~ M and the substrate, significant changes are observed in the
Ty, (t) dependence as a pulse train. At the same time, the total number of pulses over the
entire observation period was about 8. The interval of intensity of pulses was ~0.8 to 1.9 °C,
whereas their length was 20 to 40 s.

Pulse trains emerged with a delay after initiating the enzymatic reaction by adding
NADPH (for approximately 500 s) and were observed after the mechanical excitation 2 at
the 90th second (Figure 3). The total energy output of the radiation over the entire time of
the observation was about 15.7 °C.

Then, assays with the mutant type of CYP102 Al (A264K) enzyme in the presence of
LA were conducted (Figure 4).
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Figure 4. Example of Tj,(t) function of the reconstructed CYP102 Al (264K) system. Assay con-
ditions: Ccypigoat = 1072 M, 0.5 mM LA, 10 mM phosphate-buffered saline, pH 7.2, V = 200 uL,
Tsolution = 23 °C. Arrows indicate adding electron donor NADPH into the system and moments of
stirring the solution in the cell.

We know that the activity of this enzyme is over 3 orders lower than the one of its wild
type, as indicated above in the Introduction. No radiation was registered for this system
(Figure 4). The standard deviation in the experiments with the mutant enzyme did not
exceed 0.5 °C.

4. Discussion

In the CYP102 A1l enzyme system, the aqueous medium represents a heterogeneous
structure containing para- and ortho-isomers of water, while the entire enzyme system is a
more complex organization of the medium, where a protein is surrounded by an ice-like
water shell of para-isomers of water [34]. Monooxygenases catalyze reactions of integration
of one oxygen atom into different substrates, the other oxygen atom recovers to water. The
general scheme of catalytic mechanism can be presented as follows [35]:

RH + O, +2e~ + 2H* — ROH + H,O,

where RH is the substrate (LA), and (2e~ + 2H") is the electron donor, which can be both
NADPH (in the case of CYP102A1). In the process of functioning, hydrogen peroxide, OH
molecules can be produced as by-products of the hydroxylation reaction [31]. Probably, the
mechanism of CYP102A1 (WT) radiation is due to the fact that the water-enzyme medium
has a domain structure, which is nonequilibrium in the sense of the spin ratio between
the ortho- and para-isomers of water, as indicated in the works [34,36]; upon excitation
of an aqueous medium, a transition of the nonequilibrium state of the excited medium to
an equilibrium state in the spin sense can occur, while radiation can be generated in the
microwave range. The appearance of a train of microwave pulses of radiation can occur
due to an enzymatic reaction. This causes both mechanical excitation of the medium due
to the dropping and the appearance of an ice-like shell (water coat) in the surrounding
enzyme molecules in different parts (domains) of the water-protein medium, and due to
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the appearance of excited OH molecules during the enzymatic reaction, which can emit in
the microwave range [37] and initiate the emission of other OH molecules. This radiation
can be realized as a cooperative process. The disappearance of the microwave radiation in
the case of CYP102A1 (A264K) is possibly connected with the decrease in the amplitude of
fluctuations of the mutant enzyme’s globule. In order to find out the influence of the A264K
point mutation on the fluctuations of the CYP102A1 enzyme’s globule, we have conducted
additional experiments on the AFM analysis of the functional activity of the enzyme.

As a result of the approximation (performed using Equation (3)), it has been ob-
tained that the range of heights of the visualized CYP102A1 molecules both (WT) and
(A264K) was 1.3 = 6.5 nm, i.e., among them there were both monomers of a small height
hmax1 = (2.7 £ 0.1) nm, and objects of greater height .y = (3.5 & 0.3) nm. The latter were
attributed to oligomers according to the classification of objects with heights based on AFM
images of CYP102A1 [30].

As is known, aggregates of CYP102A1 molecules are the most active functionally [28].
The heights of AFM images of both (WT) and (A264K) on mica amounted to 3.5 + 0.3 nm.
This is why, in our experiments, we studied the height fluctuations of CYP102A1—both
(WT) and (A264K)—with (3.5 £ 0.1) nm height.

It was found that in the inactive state (in the absence of NADPH), the height fluctuation
(Ah(t)) of the immobilized CYP102A1 (both (WT) and (A264K)) oligomers in the absence,
and in the presence of the substrate (lauric acid) was the same. That is, the presence of
the substrate did not affect the height fluctuation. The rms value of the heights of both
(WT) and (A264K) oligomers in the presence of the substrate (lauric acid), averaged over
5 molecules, was 0.4 + 0.1 A.

Figure 5 displays the typical time dependencies of height fluctuations (Ah(t)) of the
globule of the CYP102A1 (WT) enzyme in the presence of the substrate before and after the
addition of NADPH. Namely, the dashed line indicates the time dependence of the height
fluctuations before the addition of NADPH, while the Ah(t) dependence in the presence
of NADPH is shown as a solid line. Under the conditions of hydroxylation, i.e., upon the
addition of the NADPH electron donor to the incubation medium with CYP102A1 (WT),
an increase in the amplitude of the enzyme globule oscillation to 0.8 = 0.1 A was observed,
compared to the case without NADPH (Figure 5). Since a certain time was required for
the preparation of the AFM measurements, we were able to perform the measurements
starting from only the 5th minute of the enzyme’s catalytic cycle.

1 -

Ah, nm

-

Figure 5. Typical time dependences of height fluctuations (Ah(t)) of the CYP102A1 (WT) enzyme glob-
ule in the presence of the substrate before (dashed line) and after (solid line) the addition of NADPH at
the respective stages of its catalytic cycle. The protein oligomers” height was (3.8 £ 0.1) nm. The AFM
measurements in the presence of NADPH started from 5th minute of the enzyme’s catalytic cycle.
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For CYP102A1 (A264K), analogous measurements have indicated that the amplitude
of the enzyme globule oscillation upon adding NADPH was 0.6 + 0.1 A, exhibiting a
tendency to decrease in comparison with CYP102 A1 (WT) during the enzyme functioning,
though a tendency to the increase in the fluctuations of the mutant’s globule in comparison
with its inactive state also takes place. This can mean the following. Upon the determination
of the basic level of microwave radiation for the wild-type enzymatic system, we observed
characteristic pulses of microwave radiation that appear when at the CYP102 A1 (WT)
concentration of ~10~? M. When the wild type of CYP102 Al was replaced with the
type A264K at the same enzyme concentration (C = 10~2 M) the radiation disappeared,
indicating that during its functioning, the mutant enzyme type (8333-times less active)
probably does not accumulate a sufficient quantity of ortho-isomers H,O and activated OH
groups which could, in a water medium unbalanced in terms of spin distance, lead to the
emergence of such a radiation as was detected for the wild type enzyme in [9]. Previously,
at an 8333-times lower concentration of CYP102 A1 (WT), no microwave radiation was
observed during the functioning of this system [38]; this fact can be explained by a decrease
in the number of activated OH groups and H,O ortho-isomers.

It should be emphasized that, according to AFM data, the difference between the
enzymatic activity, registered by AFM in the form of fluctuations of the enzyme globule
for the wild type enzyme (0.8 £ 0.1 A) and for the A264K mutant (0.6 + 0.1 A), is not
as significant in comparison with the 8333-fold difference in the activity obtained by
spectroscopy measurements [28,29]. In [28,29], for the enzyme activity measurements, an
approach, based on the control of NADPH oxidation at 340 nm, was employed. However,
again, these authors have employed an optical macroscopic method, in which the signal
form of an ensemble containing a large number of enzyme molecules was measured as
opposed to AFM single-molecule measurements. In addition, in our opinion, this difference
between the results, obtained by spectroscopic methods and by AFM, can be explained by
the following. During the AFM measurements of enzymatic activity (by measuring the
enzyme height fluctuations in tapping mode), the action of the AFM tip forces the structure
of the globule of the mutant to optimize in order to provide optimal electron transfer. That
is, in our AFM experiments, we have observed a nanomechanically assisted excitation of
the mutant form of the enzyme. There can be, however, other reasons for occurrence of this
phenomenon. For instance, the cooperative effect observed in aqueous medium during the
fluctuations of the enzyme globule.

It should be noted that at low enzyme concentrations (10~° M), microwave radiation
appears in the form of individual pulses with a certain delay time required to initiate this
process. It is known [38] that with an increase in the concentration of the CYP102A1 (WT)
enzyme up to 107% M, the time of radiation pulse appearing after mechanical excitation
decreases, and the intensity of pulses increases, while their number decreases to a single
pulse. This means that, at high concentrations, synchronization of the time of occurrence of
the microwave pulses and the solution stirring is observed owing to a cooperative process
caused, among other things, by the microwave radiation from emitting molecules, acting as
the impulse for the radiation of other excited molecules, while there is no linear dependence
of the released energy in the process of enzyme functioning and concentration. The absence
of such a linear dependence means that the process of microwave radiation is accompanied
not only by the production of active forms of OH (which appear during the functioning of
CYP102A1 (WT) and can emit in the microwave range), but also by radiation quenching
due to absorption by inactive forms of OH, and other possible processes of nonspecific
interaction of excited OH with the microenvironment. The complex radiation process of
the CYP102A1 enzyme system is determined by several factors, such as viscosity, which
inhibits the ortho/para transition of water isomers, and the process caused by the radiation
of the domains of the water-protein medium associated with an increase in the number of
functioning enzyme molecules (radiation factor).

For the studied mutant form of CYP102A1, the low rates of decomposition and the
subsequent formation of the water shell around the enzyme globule can be explained by the
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8333-fold reduced catalytic activity of the mutant enzyme, the form and reduced amplitude
of the protein globule vibration compared to the wild type. This is the possible reason for
the absence of microwave radiation for this mutant form at a concentration of 1077 M.

The advantage of using the RTM method for studying the influence of mutations on en-
zyme kinetics—in comparison with the calorimetry method and the spectral methods—consists
of that the RTM does not require expensive equipment, and the implementation of the RTM
measurements is simple. Regarding the spectral methods, expensive optical systems are
commonly utilized. In addition, the use of the RTM method does not eliminate the use of
calorimetric, optical, and other methods, but RTM can be used as an additional method, in
which quantum-mechanical mechanisms for the implementation of enzymatic processes
are considered.

It should be noted that the RTM method is beginning to find its use in expression
diagnostics of oncological diseases as a non-invasive method, which is very convenient for
patients. In this work, we showed that enzyme mutations can lead to changes in the radia-
tion characteristics of enzyme systems. Since mutant forms of proteins can be expressed
in cancer diseases and their degradation occurs, these processes can be accompanied by
a change in T}, depending on the type of protein and its mutation. Therefore, the result
of this work can be the basis for the development of new diagnostic systems based on
RTM methods and analysis of the pathological state of the body caused by oncology at an
early stage.

5. Conclusions

The applicability of the RTM method for the revelation of a point mutation in the
enzyme on the activity of the enzyme system has been studied with the example of CYP102
Al. We have detected that generation of microwave radiation accompanying the reaction
of hydroxylation by a nanoscale heme-containing enzyme CYP102 A1 that participates in
metabolism of fatty acids, depends on a mutation that involves the enzyme’s functional
properties. We know than amino acid replacements in the CYP102 Al (A264K) enzyme led
to an 8333-fold decrease in activity. The presented study shows that such a replacement
of an amino acid leads to the disappearance of microwave generation. This allows the
further use of microwave radiation monitoring to analyze possible point mutations in a
molecule of this and other enzymes. The detected effect can be used to monitor the activity
of enzymatic systems in order to create new systems to monitor the functional state of an
organism, new systems of non-invasive diagnostics of oncological diseases connected with
enzyme mutations.
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