Прямоугольный треугольник как сумматор площади правильных двумерных и трехмерных геометрических фигур

Аннотация. В статье показана возможность при посредстве прямоугольного треугольника и логики теоремы Пифагора нахождения площадей правильных двумерных и трехмерных геометрических фигур (в частности, для платоновых тел).

Ключевые слова: прямоугольный треугольник, сумматор площади, правильные двумерные фигуры, правильные трехмерные геометрические фигуры, теорема Пифагора.

Предполагается, что теорема Пифагора — частный случай более общей математической закономерности суммирования определенным геометрическим способом площади правильных двумерных и трехмерных геометрических фигур. То есть: логика теоремы Пифагора может быть применима для нахождения площадей правильных двумерных и трехмерных геометрических фигур (в частности, для платоновых тел) если в качестве размерности катетов применить значения длины сторон или ребер этих фигур, высоту фигур, а так же — значение одного из радиусов — внешнего, среднего или внутреннего. На рисунке, например, показана модель использования теоремы Пифагора для нахождения площадей круга и сферы.

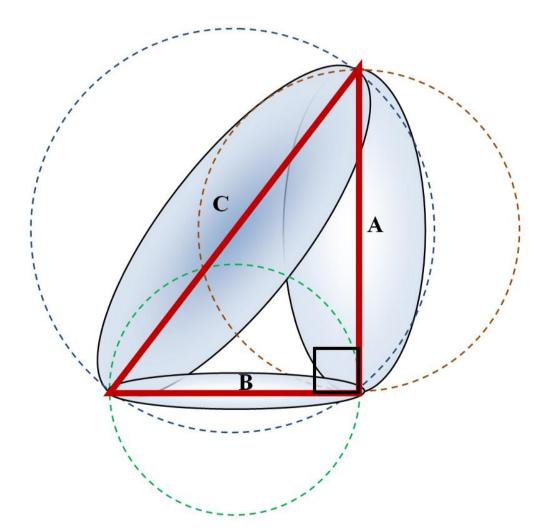


Рисунок – Модель использования теоремы Пифагора для нахождения площадей круга и сферы, где сплошной линией обозначены прямоугольный треугольник и круги A, B, C, а прерывистой различных цветов – сферы

Проверка обозначенного выше предположения посредством расчета значений площадей правильных геометрических фигур при значениях натурального ряда (от 1 до 5) длин сторон или диаметра круга (для двумерных фигур), длин ребер или диаметра сферы (для трехмерных фигур) показала его справедливость (таблица).

Таблица — Значения площадей правильных геометрических фигур при значениях натурального ряда от 1 до 5 длин сторон или диаметра круга (для двумерных фигур), длин ребер или диаметра сферы (для трехмерных фигур)

Фигуры	Параметры площади правильных геометрических фигур, S, усл. ед.									
Фигуры	Двумерные				Трехмерные					
Длина стороны, ребра или внутреннего диаметра, L, усл. ед	Круг	Равносторонний треугольник	Квадрат	Пентагон	Ky6	Сфера	Тетраэдр	Октаэдр	Икосаэдр	Долекаэдр
1	0,785 0,25π	0,433	1	1,720	6	3,141 = 1π	1,732 =√3	3,464 =√12	8,66 =√75	20,646
2	$3,141$ = 1π	1.732 √3	4	6.882	24	12,566 = 4π	6,928 =√48	13,856 =√192	34,64 =√1200	82,583
3	7,069 =2,25 π	3,897	9	15,485	54	28,274 =9π	15,588	31,177 =√972	77,94 =√6075	185,812
4	12,566 =4π	6,928 √48	16	27,527	96	50,265 = 16π	27,713 =√768	55,426 =√3072	138,56 √19200	330,331
5	19,635 =6,25π	10,825	25	43,012	150	78,54 = 25π	43,301	86,603 =√7500	216,5 √46875	516,143

По результатам настоящего исследования можно отметить, что правильные геометрические двумерные и трехмерные фигуры демонстрируют некоторые математические свойства, отличные от иных фигур (не правильных). В частности,

- возможность суммирования их площади посредством прямоугольного треугольника;
- сходством размера вписанного в них круга (диаметром 2 для правильных двумерных фигур) и вписанной сферы (диаметром 3 для правильных трехмерных фигур) при условии, что значение площади равно значению объема (то есть, должно выполняться равенство значений площади и периметра для двумерных фигур, объема и площади для трехмерных [1, 2]).

Можно предположить, что, вероятно, существует и аналогичный «геометрический способ» получения значения объема третьей трехмерной фигуры (правильной) на основании значений объема (или иных значений параметров) подобных двух других правильных фигур (п-фигур) посредством некой геометрической фигуры (вероятно, уже трехмерной). В этом отношении существует определенная свобода действий и теоретический задел для исследователей математических закономерностей.

Список литературы:

- 1. Ворон, А.В. Тождество значений площади и периметра ряда двумерных фигур, объема и площади трехмерных // «Академия Тринитаризма», М., Эл № 77-6567, публ.25873, 14.11.2019.
- 2. Ворон, А.В. Тождество значений площади и периметра ряда двумерных фигур (квадрат, круг, прямоугольный, тупоугольный, равнобедренный и равносторонний треугольник), объема и площади трехмерных (платоновы тела, конус, цилиндр, 3-4-6-гранная пирамида и сфера) // «Академия Тринитаризма», М., Эл № 77-6567, публ.27338, 23.09.2021.